704, Binary Search
10/10/23About 3 min
I Problem
Given an array of integers nums which is sorted in ascending order, and an integer target, write a function to search target in nums.
If target exists, then return its index. Otherwise, return -1.
You must write an algorithm with O(log n) runtime complexity.
Example 1:
Input: nums = [-1,0,3,5,9,12], target = 9
Output: 4
Explanation: 9 exists in nums and its index is 4
Example 2:
Input: nums = [-1,0,3,5,9,12], target = 2
Output: -1
Explanation: 2 does not exist in nums so return -1
Constraints:
- 1 <= nums.length <= 10⁴
- -10⁴ < nums[i], target < 10⁴
- All the integers in nums are unique.
- nums is sorted in ascending order.
Related Topics:
- Array
- Binary Search
II Solution
macro_rules! mid_idx {
($left:expr, $right:expr) => {
$left + (($right - $left) >> 1)
};
}Approach 1: Find the Exact Value
Rust
pub fn search(nums: Vec<i32>, target: i32) -> i32 {
let mut left = 0;
let mut right = nums.len();
while left < right {
let mid = mid_idx!(left, right);
if target < nums[mid] {
right = mid;
} else if nums[mid] < target {
left = mid + 1;
} else {
return mid as i32;
}
}
-1
}Java
public int search(int[] nums, int target) {
int left = 0;
int right = nums.length;
while (left < right) {
int mid = left + ((right - left) >> 1);
if (target < nums[mid]) {
right = mid;
} else if (nums[mid] < target) {
left = mid + 1;
} else {
return mid;
}
}
return -1;
}Go
func search(nums []int, target int) int {
left, right := 0, len(nums)
for left < right {
mid := left + (right-left)/2
if target < nums[mid] {
right = mid
} else if nums[mid] < target {
left = mid + 1
} else {
return mid
}
}
return -1
}C#
public int Search(int[] nums, int target)
{
int left = 0, right = nums.Length;
while (left < right)
{
int mid = left + (right - left) / 2;
if (target < nums[mid])
right = mid;
else if (nums[mid] < target)
left = mid + 1;
else
return mid;
}
return -1;
}C++
int search(vector<int>& nums, int target) {
auto left = 0;
auto right = nums.size();
while (left < right) {
auto mid = left + ((right - left) >> 1);
if (target < nums[mid])
right = mid;
else if (target > nums[mid])
left = mid + 1;
else
return mid;
}
return -1;
}Approach 2: Find Upper Bound
Rust
pub fn search(nums: Vec<i32>, target: i32) -> i32 {
let mut left = 0;
let mut right = nums.len();
while left < right {
let mid = mid_idx!(left, right);
if nums[mid] <= target {
left = mid + 1;
} else {
right = mid;
}
}
if left > 0 && nums[left - 1] == target {
left as i32 - 1
} else {
-1
}
}Java
public int search(int[] nums, int target) {
int left = 0;
int right = nums.length;
while (left < right) {
int mid = left + ((right - left) >> 1);
if (nums[mid] <= target) {
left = mid + 1;
} else {
right = mid;
}
}
if (left > 0 && nums[left - 1] == target) {
return left - 1;
} else {
return -1;
}
}Go
func search(nums []int, target int) int {
left, right := 0, len(nums)
for left < right {
mid := left + (right-left)/2
if nums[mid] <= target {
left = mid + 1
} else {
right = mid
}
}
if left > 0 && nums[left-1] == target {
return left - 1
} else {
return -1
}
}C#
public int Search(int[] nums, int target)
{
int left = 0, right = nums.Length;
while (left < right)
{
int mid = left + (right - left) / 2;
if (target >= nums[mid])
left = mid + 1;
else
right = mid;
}
if (left > 0 && nums[left - 1] == target)
return left - 1;
return -1;
}C++
int search(vector<int>& nums, int target) {
auto left = 0;
auto right = nums.size();
while (left < right) {
auto mid = left + ((right - left) >> 1);
if (target >= nums[mid])
left = mid + 1;
else
right = mid;
}
if (left > 0 && nums[left - 1] == target)
return left - 1;
return -1;
}Approach 3: Find Lower Bound
Rust
pub fn search(nums: Vec<i32>, target: i32) -> i32 {
let mut left = 0;
let mut right = nums.len();
while left < right {
let mid = mid_idx!(left, right);
if target <= nums[mid] {
right = mid;
} else {
left = mid + 1;
}
}
if left < nums.len() && nums[left] == target {
left as i32
} else {
-1
}
}Java
public int search(int[] nums, int target) {
int left = 0;
int right = nums.length;
while (left < right) {
int mid = left + ((right - left) >> 1);
if (target <= nums[mid]) {
right = mid;
} else {
left = mid + 1;
}
}
if (left < nums.length && nums[left] == target) {
return left;
} else {
return -1;
}
}Go
func search(nums []int, target int) int {
left, right := 0, len(nums)
for left < right {
mid := left + (right-left)/2
if target <= nums[mid] {
right = mid
} else {
left = mid + 1
}
}
if left < len(nums) && nums[left] == target {
return left
} else {
return -1
}
}C#
public int Search(int[] nums, int target)
{
int left = 0, right = nums.Length;
while (left < right)
{
int mid = left + (right - left) / 2;
if (target <= nums[mid])
right = mid;
else
left = mid + 1;
}
if (left < nums.Length && nums[left] == target)
return left;
return -1;
}C++
int search(vector<int>& nums, int target) {
auto left = 0;
auto right = nums.size();
while (left < right) {
auto mid = left + ((right - left) >> 1);
if (target <= nums[mid])
right = mid;
else
left = mid + 1;
}
if (left < nums.size() && nums[left] == target)
return left;
return -1;
}Approach 4: Use built-in Tools
Rust
pub fn search(nums: Vec<i32>, target: i32) -> i32 {
match nums.binary_search(&target) {
Ok(idx) => idx as i32,
Err(_) => -1,
}
}Java
public int search(int[] nums, int target) {
int idx = Arrays.binarySearch(nums, target);
return idx < 0 ? -1 : idx;
}Go
import "slices"
func search(nums []int, target int) int {
if idx, find := slices.BinarySearch(nums, target); find {
return idx;
} else {
return -1
}
}C#
public int Search(int[] nums, int target)
{
int idx = Array.BinarySearch(nums, target);
return idx >= 0 ? idx : -1;
}C++
#include <algorithm>
#include <vector>
int search(vector<int>& nums, int target) {
if (std::binary_search(nums.cbegin(), nums.cend(), target))
return std::lower_bound(nums.cbegin(), nums.cend(), target) - nums.cbegin();
return -1;
}