1137, 第N个泰波那契数
大约 3 分钟
一、题目描述
泰波那契序列Tn
定义如下:
T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2
给你整数n
,请返回第n
个泰波那契数Tn
的值。
示例 1
输入: n = 4
输出: 4
解释:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4
示例 2
输入: n = 25
输出: 1389537
提示
0 <= n <= 37
- 答案保证是一个
32
位整数,即answer <= 2^31 - 1
。
相关主题
- 记忆化搜索
- 数学
- 动态规划
二、题解
方法 1: 动态规划
pub fn tribonacci(n: i32) -> i32 {
//Self::dp_recur(n)
Self::dp_iter(n)
}
/// Time Complexity: O(n)
/// Space Complexity: O(n)
fn dp_recur(n: i32) -> i32 {
let len = if n < 3 { 3 } else { n as usize + 1 };
let mut cache = vec![-1; len];
(cache[0], cache[1], cache[2]) = (0, 1, 1);
const RECUR: fn(&mut [i64], usize) -> i64 = |cache, n| {
if cache[n] != -1 {
return cache[n];
}
let sum = RECUR(cache, n - 1) + RECUR(cache, n - 2) + RECUR(cache, n - 3);
cache[n] = sum;
sum
};
RECUR(&mut cache, n as usize) as i32
}
/// Time Complexity: O(n)
/// Space Complexity: O(1)
fn dp_iter(n: i32) -> i32 {
match n {
0 => 0,
1 | 2 => 1,
_ => {
let (mut t0, mut t1, mut t2, mut sum) = (0_i64, 0, 1, 1);
for _ in 2..n {
(t0, t1, t2) = (t1, t2, sum);
sum = t0 + t1 + t2;
}
sum as i32
}
}
}
public int tribonacci(int n) {
//return dpRecur(n);
return dpIter(n);
}
BiFunction<long[], Integer, Long> recur = (cache, n) -> {
if (cache[n] != -1) {
return cache[n];
}
long sum = this.recur.apply(cache, n - 1) + this.recur.apply(cache, n - 2) + this.recur.apply(cache, n - 3);
cache[n] = sum;
return sum;
};
int dpRecur(int n) {
int len = n < 3 ? 3 : n + 1;
long[] cache = new long[len];
for (int i = 0; i < len; i++) {
if (i == 0) {
cache[i] = 0;
} else if (i == 1 || i == 2) {
cache[i] = 1;
} else {
cache[i] = -1;
}
}
return this.recur.apply(cache, n).intValue();
}
int dpIter(int n) {
switch (n) {
case 0 -> {
return 0;
}
case 1, 2 -> {
return 1;
}
default -> {
long t0 = 0, t1 = 0, t2 = 1, sum = 1;
for (int i = 2; i < n; i++) {
t0 = t1;
t1 = t2;
t2 = sum;
sum = t0 + t1 + t2;
}
return (int) sum;
}
}
}
func tribonacci(n int) int {
//return dpRecur(n)
return dpIter(n)
}
func dpRecur(n int) int {
size := n + 1
if size < 3 {
size = 3
}
cache := make([]int, size)
for i := range size {
if i == 0 {
cache[i] = 0
} else if i == 1 || i == 2 {
cache[i] = 1
} else {
cache[i] = -1
}
}
var recur func([]int, int) int
recur = func(cache []int, n int) int {
if cache[n] != -1 {
return cache[n]
}
sum := recur(cache, n-1) + recur(cache, n-2) + recur(cache, n-3)
cache[n] = sum
return sum
}
return recur(cache, n)
}
func dpIter(n int) int {
switch n {
case 0:
return 0
case 1, 2:
return 1
default:
t0, t1, t2, sum := 0, 0, 1, 1
for i := 2; i < n; i++ {
t0, t1, t2 = t1, t2, sum
sum = t0 + t1 + t2
}
return sum
}
}
方法 2: 矩阵快速幂
/// Time Complexity: O(log(n))
/// Space Complexity: O(1)
pub fn tribonacci(n: i32) -> i32 {
match n {
0 => 0,
1 | 2 => 1,
_ => {
let multiply = |a: &[Vec<i32>], b: &[Vec<i32>]| {
let mut c = vec![vec![0; 3]; 3];
for i in 0..3 {
for j in 0..3 {
c[i][j] = a[i][0] * b[0][j] + a[i][1] * b[1][j] + a[i][2] * b[2][j];
}
}
c
};
let mut m = vec![vec![1, 1, 1], vec![1, 0, 0], vec![0, 1, 0]];
let mut pow = || {
let mut ret = vec![vec![1, 0, 0], vec![0, 1, 0], vec![0, 0, 1]];
while n > 0 {
if n & 1 == 1 {
ret = multiply(&ret, &m);
}
n >>= 1;
m = multiply(&m, &m);
}
ret
};
let res = pow();
res[0][2]
}
}
}
public int tribonacci(int n) {
if (n == 0) {
return 0;
}
if (n <= 2) {
return 1;
}
BiFunction<int[][], int[][], int[][]> multiply = (a, b) -> {
int[][] c = new int[3][3];
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
c[i][j] = a[i][0] * b[0][j] + a[i][1] * b[1][j] + a[i][2] * b[2][j];
}
}
return c;
};
int[][] m = new int[][]{new int[]{1, 1, 1}, new int[]{1, 0, 0}, new int[]{0, 1, 0}};
BiFunction<int[][], Integer, int[][]> pow = (_m, _n) -> {
int[][] ret = new int[][]{new int[]{1, 0, 0}, new int[]{0, 1, 0}, new int[]{0, 0, 1}};
while (_n > 0) {
if ((_n & 1) == 1) {
ret = multiply.apply(ret, _m);
}
_n >>= 1;
_m = multiply.apply(_m, _m);
}
return ret;
};
int[][] res = pow.apply(m, n);
return res[0][2];
}
func tribonacci(n int) int {
if n == 0 {
return 0
}
if n <= 2 {
return 1
}
multiply := func(a, b *[][]int) [][]int {
c := make([][]int, 3)
c[0], c[1], c[2] = []int{0, 0, 0}, []int{0, 0, 0}, []int{0, 0, 0}
for i := range 3 {
for j := range 3 {
c[i][j] = (*a)[i][0]*(*b)[0][j] + (*a)[i][1]*(*b)[1][j] + (*a)[i][2]*(*b)[2][j]
}
}
return c
}
m := make([][]int, 3)
m[0], m[1], m[2] = []int{1, 1, 1}, []int{1, 0, 0}, []int{0, 1, 0}
pow := func() [][]int {
ret := make([][]int, 3)
ret[0], ret[1], ret[2] = []int{1, 0, 0}, []int{0, 1, 0}, []int{0, 0, 1}
for n > 0 {
if n&1 == 1 {
ret = multiply(&ret, &m)
}
n >>= 1
m = multiply(&m, &m)
}
return ret
}
res := pow()
return res[0][2]
}