150, 逆波兰表达式求值
大约 3 分钟
一、题目描述
给你一个字符串数组tokens
,表示一个根据逆波兰表示法表示的算术表达式。
请你计算该表达式。返回一个表示表达式值的整数。
注意:
- 有效的算符为
'+'
、'-'
、'*'
和'/'
。 - 每个操作数(运算对象)都可以是一个整数或者另一个表达式。
- 两个整数之间的除法总是向零截断。
- 表达式中不含除零运算。
- 输入是一个根据逆波兰表示法表示的算术表达式。
- 答案及所有中间计算结果可以用32 位整数表示。
示例 1
输入: tokens = ["2", "1", "+", "3", "*"]
输出: 9
解释: 该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2
输入: tokens = ["4", "13", "5", "/", "+"]
输出: 6
解释: 该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3
输入: tokens = ["10", "6", "9", "3", "+", "-11", "*", "/", "*", "17", "+", "5", "+"]
输出: 22
解释: 该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
提示
1 <= tokens.length <= 10⁴
tokens[i]
是一个算符("+"
、"-"
、"*"
或"/"
),或是在范围[-200, 200]
内的一个整数
逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
- 平常使用的算式则是一种中缀表达式,如
( 1 + 2 ) * ( 3 + 4 )
。 - 该算式的逆波兰表达式写法为
( ( 1 2 + ) ( 3 4 + ) * )
。
逆波兰表达式主要有以下两个优点:
- 去掉括号后表达式无歧义,上式即便写成
1 2 + 3 4 + *
也可以依据次序计算出正确结果。 - 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中。
相关主题
- 栈
- 数组
- 数学
二、题解
const CALC: fn(i32, i32, &str) -> i32 = |left, right, operator| match operator {
"+" => left + right,
"-" => left - right,
"*" => left * right,
"/" => left / right,
_ => panic!("Unsupported operator: {}", operator),
};
const IS_OPERATOR: fn(&str) -> bool = |token| match token {
"+" | "-" | "*" | "/" => true,
_ => false,
};
Predicate<String> isOperator = (token) -> switch (token) {
case "+", "-", "*", "/" -> true;
default -> false;
};
@FunctionalInterface
interface TriFunction<X, Y, Z, W> {
W apply(X x, Y y, Z z);
}
TriFunction<Integer, Integer, String, Integer> calc = (left, right, operator) -> switch (operator) {
case "+" -> left + right;
case "-" -> left - right;
case "*" -> left * right;
case "/" -> left / right;
default -> throw new UnsupportedOperationException("UnsupportedOperator");
};
方法 1: 模拟栈
/// Time Complexity: O(n^2)
///
/// Space Complexity: O(1)
pub fn eval_rpn(tokens: Vec<String>) -> i32 {
let len = tokens.len();
for i in 0..len {
if IS_OPERATOR(&tokens[i]) {
let mut r = i - 1;
while tokens[r].is_empty() {
r -= 1;
}
let right = tokens[r].parse::<i32>().unwrap();
let mut l = r - 1;
while tokens[l].is_empty() {
l -= 1;
}
let left = tokens[l].parse::<i32>().unwrap();
tokens[i] = CALC(left, right, &tokens[i]).to_string();
tokens[r].clear();
tokens[l].clear();
}
}
tokens[len - 1].parse::<i32>().unwrap()
}
// Time Complexity: O(n^2)
//
// Space Complexity: O(1)
public int evalRPN(String[] tokens) {
int len = tokens.length;
for (int i = 0; i < len; i++) {
if (this.isOperator.test(tokens[i])) {
int r = i - 1;
while (tokens[r].isBlank()) {
r--;
}
int right = Integer.parseInt(tokens[r]);
int l = r - 1;
while (tokens[l].isBlank()) {
l--;
}
int left = Integer.parseInt(tokens[l]);
tokens[i] = this.calc.apply(left, right, tokens[i]).toString();
tokens[r] = "";
tokens[l] = "";
}
}
return Integer.parseInt(tokens[len - 1]);
}
方法 2: 使用栈
/// Time Complexity: O(n)
///
/// Space Complexity: O(n)
pub fn eval_rpn(tokens: Vec<String>) -> i32 {
let mut stack = Vec::with_capacity(tokens.len() / 2);
for ref token in tokens {
if IS_OPERATOR(token) {
let right = stack.pop().unwrap();
let left = stack.pop().unwrap();
stack.push(CALC(left, right, token));
} else {
stack.push(token.parse::<i32>().unwrap())
}
}
stack[0]
}
// Time Complexity: O(n)
//
// Space Complexity: O(n)
public int evalRPN(String[] tokens) {
Deque<Integer> stack = new ArrayDeque<>();
for (int i = 0; i < tokens.length; i++) {
if (this.isOperator.test(tokens[i])) {
Integer right = stack.pop();
Integer left = stack.pop();
stack.push(this.calc.apply(left, right, tokens[i]));
} else {
stack.push(Integer.parseInt(tokens[i]));
}
}
return stack.getFirst();
}