Skip to main content

225, Implement Stack using Queues

MikeAbout 2 minstack/queueeasystackqueuedesign

I Problem

Implement a last-in-first-out (LIFO) stack using only two queues. The implemented stack should support all the functions of a normal stack (push, top, pop, and empty).

Implement the MyStack class:

  • void push(int x) Pushes element x to the top of the stack.
  • int pop() Removes the element on the top of the stack and returns it.
  • int top() Returns the element on the top of the stack.
  • boolean empty() Returns true if the stack is empty, false otherwise.

Notes:

  • You must use only standard operations of a queue, which means that only push to back, peek/pop from front, size and is empty operations are valid.
  • Depending on your language, the queue may not be supported natively. You may simulate a queue using a list or deque (double-ended queue) as long as you use only a queue's standard operations.

Example 1
Input:
["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]
Output:
[null, null, null, 2, 2, false]
Explanation:

MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top();   // return 2
myStack.pop();   // return 2
myStack.empty(); // return False

Constraints

  • 1 <= x <= 9
  • At most 100 calls will be made to push, pop, top, and empty.
  • All the calls to pop and top are valid.

Follow up
Can you implement the stack using only one queue?

Related Topics

  • Stack
  • Design
  • Queue

II Solution

Approach 1: Two Queues

pub struct MyStack {
    q1: VecDeque<i32>,
    q2: VecDeque<i32>,
}

impl MyStack {
    pub fn new() -> Self {
        MyStack {
            q1: VecDeque::new(),
            q2: VecDeque::new(),
        }
    }

    /// Time Complexity: O(n)
    ///
    /// Space Complexity: O(n)
    pub fn push(&mut self, x: i32) {
        self.q2.push_back(x);

        while let Some(val) = self.q1.pop_front() {
            self.q2.push_back(val);
        }

        std::mem::swap(&mut self.q1, &mut self.q2);
    }

    /// Time Complexity: O(1)
    ///
    /// Space Complexity: O(1)
    pub fn pop(&mut self) -> i32 {
        self.q1.pop_front().unwrap()
    }

    /// Time Complexity: O(1)
    ///
    /// Space Complexity: O(1)
    pub fn top(&mut self) -> i32 {
        *self.q1.front().unwrap()
    }

    /// Time Complexity: O(1)
    ///
    /// Space Complexity: O(1)
    pub fn empty(&self) -> bool {
        self.q1.is_empty()
    }
}

Approach 2: One Queue

pub struct MyStack {
    q1: VecDeque<i32>,
}

impl MyStack {
    pub fn new() -> Self {
        MyStack {
            q1: VecDeque::new(),
        }
    }

    /// Time Complexity: O(n)
    ///
    /// Space Complexity: O(n)
    pub fn push(&mut self, x: i32) {
        let mut len = self.q1.len();
        self.q1.push_back(x);

        while len != 0 {
            if let Some(val) = self.q1.pop_front() {
                self.q1.push_back(val);
            }
            len -= 1;
        }
    }

    /// Time Complexity: O(1)
    ///
    /// Space Complexity: O(1)
    pub fn pop(&mut self) -> i32 {
        self.q1.pop_front().unwrap()
    }

    /// Time Complexity: O(1)
    ///
    /// Space Complexity: O(1)
    pub fn top(&mut self) -> i32 {
        *self.q1.front().unwrap()
    }

    /// Time Complexity: O(1)
    ///
    /// Space Complexity: O(1)
    pub fn empty(&self) -> bool {
        self.q1.is_empty()
    }
}