376, Wiggle Subsequence
I Problem
A wiggle sequence is a sequence where the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with one element and a sequence with two non-equal elements are trivially wiggle sequences.
- For example,
[1, 7, 4, 9, 2, 5]
is a wiggle sequence because the differences(6, -3, 5, -7, 3)
alternate between positive and negative. - In contrast,
[1, 4, 7, 2, 5]
and[1, 7, 4, 5, 5]
are not wiggle sequences. The first is not because its first two differences are positive, and the second is not because its last difference is zero.
A subsequence is obtained by deleting some elements (possibly zero) from the original sequence, leaving the remaining elements in their original order.
Given an integer array nums
, return the length of the longest wiggle subsequence of nums
.
Example 1
Input: nums = [1, 7, 4, 9, 2, 5]
Output: 6
Explanation: The entire sequence is a wiggle sequence with differences (6, -3, 5, -7, 3)
.
Example 2
Input: nums = [1, 17, 5, 10, 13, 15, 10, 5, 16, 8]
Output: 7
Explanation: There are several subsequences that achieve this length. One is [1, 17, 10, 13, 10, 16, 8]
with differences (16, -7, 3, -3, 6, -8)
.
Example 3
Input: nums = [1, 2, 3, 4, 5, 6, 7, 8, 9]
Output: 2
Constraints
1 <= nums.length <= 1000
0 <= nums[i] <= 1000
Follow up
Could you solve this in O(n)
time?
Related Topics
- Greedy
- Array
- Dynamic Programming
II Solution
Approach 1: Greedy
pub fn wiggle_max_length(nums: Vec<i32>) -> i32 {
let len = nums.len();
if len <= 1 {
return len as i32;
}
let mut prev_diff = nums[1] - nums[0];
let mut res = if prev_diff == 0 { 1 } else { 2 };
for i in 2..len {
let diff = nums[i] - nums[i - 1];
if (diff > 0 && prev_diff <= 0) || (diff < 0 && prev_diff >= 0) {
prev_diff = diff;
res += 1;
}
}
res
}
public int wiggleMaxLength(int[] nums) {
int len = nums.length;
if (len <= 1) {
return len;
}
int prevDiff = nums[1] - nums[0];
int res = prevDiff == 0 ? 1 : 2;
for (int i = 2; i < len; i++) {
int diff = nums[i] - nums[i - 1];
if ((diff > 0 && prevDiff <= 0) || (diff < 0 && prevDiff >= 0)) {
prevDiff = diff;
res++;
}
}
return res;
}
Approach 2: Dynamic Programming
pub fn wiggle_max_length(nums: Vec<i32>) -> i32 {
let len = nums.len();
if len <= 1 {
return len as i32;
}
let (mut up, mut down) = (vec![0; len], vec![0; len]);
(up[0], down[0]) = (1, 1);
for i in 1..len {
if nums[i - 1] < nums[i] {
up[i] = std::cmp::max(up[i - 1], down[i - 1] + 1);
down[i] = down[i - 1];
} else if nums[i - 1] > nums[i] {
up[i] = up[i - 1];
down[i] = std::cmp::max(up[i - 1] + 1, down[i - 1]);
} else {
up[i] = up[i - 1];
down[i] = down[i - 1];
}
}
std::cmp::max(up[len - 1], down[len - 1])
}
public int wiggleMaxLength(int[] nums) {
int len = nums.length;
if (len <= 1) {
return len;
}
int[] up = new int[len], down = new int[len];
up[0] = down[0] = 1;
for (int i = 1; i < len; i++) {
if (nums[i - 1] < nums[i]) {
up[i] = Math.max(up[i - 1], down[i - 1] + 1);
down[i] = down[i - 1];
} else if (nums[i - 1] > nums[i]) {
up[i] = up[i - 1];
down[i] = Math.max(up[i - 1] + 1, down[i - 1]);
} else {
up[i] = up[i - 1];
down[i] = down[i - 1];
}
}
return Math.max(up[len - 1], down[len - 1]);
}
Approach 3: Optimized Dynamic Programming
pub fn wiggle_max_length(nums: Vec<i32>) -> i32 {
let len = nums.len();
if len <= 1 {
return len as i32;
}
let (mut up, mut down) = (1, 1);
for i in 1..len {
if nums[i - 1] < nums[i] {
up = std::cmp::max(up, down + 1);
} else if nums[i - 1] > nums[i] {
down = std::cmp::max(up + 1, down);
}
}
std::cmp::max(up, down)
}
public int wiggleMaxLength(int[] nums) {
int len = nums.length;
if (len <= 1) {
return len;
}
int up = 1, down = 1;
for (int i = 1; i < len; i++) {
if (nums[i - 1] < nums[i]) {
up = Math.max(up, down + 1);
} else if (nums[i - 1] > nums[i]) {
down = Math.max(up + 1, down);
}
}
return Math.max(up, down);
}