452, Minimum Number of Arrows to Burst Balloons
I Problem
There are some spherical balloons taped onto a flat wall that represents the XY-plane. The balloons are represented as a 2D integer array points
where points[i] = [xstart, xend]
denotes a balloon whose horizontal diameter stretches between xstart
and xend
. You do not know the exact y-coordinates of the balloons.
Arrows can be shot up directly vertically (in the positive y-direction) from different points along the x-axis. A balloon with xstart
and xend
is burst by an arrow shot at x
if xstart <= x <= xend
. There is no limit to the number of arrows that can be shot. A shot arrow keeps traveling up infinitely, bursting any balloons in its path.
Given the array points
, return the minimum number of arrows that must be shot to burst all balloons.
Example 1
Input: points = [[10, 16], [2, 8], [1, 6], [7, 12]]
Output: 2
Explanation: The balloons can be burst by 2 arrows:
- Shoot an arrow at
x = 6
, bursting the balloons[2, 8]
and[1, 6]
. - Shoot an arrow at
x = 11
, bursting the balloons[10, 16]
and[7, 12]
.
Example 2
Input: points = [[1, 2], [3, 4], [5, 6], [7, 8]]
Output: 4
Explanation: One arrow needs to be shot for each balloon for a total of 4
arrows.
Example 3
Input: points = [[1, 2], [2, 3], [3, 4], [4, 5]]
Output: 2
Explanation: The balloons can be burst by 2 arrows:
- Shoot an arrow at
x = 2
, bursting the balloons[1, 2]
and[2, 3]
. - Shoot an arrow at
x = 4
, bursting the balloons[3, 4]
and[4, 5]
.
Constraints
1 <= points.length <= 10⁵
points[i].length == 2
-2³¹ <= xstart < xend <= 2³¹ - 1
Related Topics
- Greedy
- Array
- Sorting
II Solution
Approach 1: Brute Force
/// Time Complexity: O(n^2)
/// Space Complexity: O(n)
pub fn find_min_arrow_shots(points: Vec<Vec<i32>>) -> i32 {
points.sort_unstable_by(|a, b| a[1].cmp(&b[1]));
let len = points.len();
let mut burst = vec![false; len];
let (mut idx, mut res) = (0, 0);
let has_false = |idx: &mut usize, burst: &[bool]| {
for i in 0..len {
if !burst[i] {
*idx = i;
return true;
}
}
false
};
while has_false(&mut idx, &burst) {
res += 1;
for j in idx..len {
if points[j][0] <= points[idx][1] {
burst[j] = true;
}
}
}
res
}
BiPredicate<int[], boolean[]> hasFalse = (tup, burst) -> {
for (int i = 0; i < burst.length; i++) {
if (!burst[i]) {
tup[0] = i;
return true;
}
}
return false;
};
/**
* Time Complexity:O(n^2)
* Space Complexity:O(n)
*/
public int findMinArrowShots(int[][] points) {
Arrays.sort(points, Comparator.comparingInt(a -> a[1]));
int len = points.length;
boolean[] burst = new boolean[len];
int[] tup = new int[2];
while (this.hasFalse.test(tup, burst)) {
tup[1]++;
for (int j = tup[0], i = tup[0]; j < len; j++) {
if (points[j][0] <= points[i][1]) {
burst[j] = true;
}
}
}
return tup[1];
}
// Time Complexity: O(n^2)
// Space Complexity: O(n)
func findMinArrowShots(points [][]int) int {
slices.SortFunc(points, func(a, b []int) int {
return cmp.Compare(a[1], b[1])
})
size := len(points)
burst := make([]bool, size)
idx, res := 0, 0
hasFalse := func() bool {
for i, v := range burst {
if !v {
idx = i
return true
}
}
return false
}
for hasFalse() {
res++
for j := idx; j < size; j++ {
if points[j][0] <= points[idx][1] {
burst[j] = true
}
}
}
return res
}
Approach 2: Greedy
/// Time Complexity: O(n*log(n))
/// Space Complexity: O(n)
pub fn find_min_arrow_shots(points: Vec<Vec<i32>>) -> i32 {
points.sort_unstable_by(|a, b| a[1].cmp(&b[1]));
let (mut pos, mut res) = (points[0][1], 1);
for p in points {
if p[0] > pos {
res += 1;
pos = p[1];
}
}
res
}
/**
* Time Complexity:O(n*log(n))
* Space Complexity:O(n)
*/
public int findMinArrowShots(int[][] points) {
Arrays.sort(points, Comparator.comparingInt(a -> a[1]));
int pos = points[0][1], res = 1;
for (int[] p : points) {
if (p[0] > pos) {
res++;
pos = p[1];
}
}
return res;
}
// Time Complexity: O(n*log(n))
// Space Complexity: O(n)
func findMinArrowShots(points [][]int) int {
slices.SortFunc(points, func(a, b []int) int {
return cmp.Compare(a[1], b[1])
})
pos, res := points[0][1], 1
for _, p := range points {
if p[0] > pos {
res++
pos = p[1]
}
}
return res
}