102, Binary Tree Level Order Traversal
About 2 min
I Problem
Given the root
of a binary tree, return the level order traversal of its nodes' values. (i.e., from left to right, level by level).
Example 1
Input: [3, 9, 20, null, null, 15, 7]
Output: [[3], [9, 20], [15, 7]]
Example 2
Input: root = [1]
Output: [[1]]
Example 3
Input: root = []
Output: []
Constraints
- The number of nodes in the tree is in the range
[0, 2000]
. -1000 <= Node.val <= 1000
Related Topics
- Tree
- Breadth-First Search
- Binary Tree
II Solution
#[derive(Debug, PartialEq, Eq)]
pub struct TreeNode {
pub val: i32,
pub left: Option<Rc<RefCell<TreeNode>>>,
pub right: Option<Rc<RefCell<TreeNode>>>,
}
impl TreeNode {
#[inline]
pub fn new(val: i32) -> Self {
TreeNode {
val,
left: None,
right: None,
}
}
}
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode() {}
TreeNode(int val) { this.val = val; }
TreeNode(int val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
Approach 1: Recursion
pub fn level_order(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<Vec<i32>> {
let mut res = vec![];
const RECURSION_IMPL: fn(Option<Rc<RefCell<TreeNode>>>, usize, &mut Vec<Vec<i32>>) =
|root, level, res| match root {
None => {}
Some(curr) => {
if level == res.len() {
res.push(vec![]);
}
res[level].push(curr.borrow().val);
if let Some(left) = curr.borrow_mut().left.take() {
RECURSION_IMPL(Some(left), level + 1, res);
}
if let Some(right) = curr.borrow_mut().right.take() {
RECURSION_IMPL(Some(right), level + 1, res);
}
}
};
RECURSION_IMPL(root, 0, &mut res);
res
}
@FunctionalInterface
interface TriConsumer<X, Y, Z> {
void accept(X x, Y y, Z z);
}
TriConsumer<TreeNode, Integer, List<List<Integer>>> recurImpl = (root, level, res) -> {
if (root == null) {
return;
}
if (level == res.size()) {
res.add(new ArrayList<>());
}
res.get(level).add(root.val);
if (root.left != null) {
this.recurImpl.accept(root.left, level + 1, res);
}
if (root.right != null) {
this.recurImpl.accept(root.right, level + 1, res);
}
};
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
this.recurImpl.accept(root, 0, res);
return res;
}
Approach 2: Iteration
pub fn level_order(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<Vec<i32>> {
//Self::iteration_impl_1(root)
Self::iteration_impl_2(root)
}
fn iteration_impl_1(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<Vec<i32>> {
let mut res = vec![];
if let Some(root) = root {
let mut queue = VecDeque::from([(0, root)]);
while let Some((level, curr)) = queue.pop_front() {
if level == res.len() {
res.push(vec![]);
}
res[level].push(curr.borrow().val);
if let Some(left) = curr.borrow_mut().left.take() {
queue.push_back((level + 1, left));
}
if let Some(right) = curr.borrow_mut().right.take() {
queue.push_back((level + 1, right));
}
}
}
res
}
fn iteration_impl_2(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<Vec<i32>> {
let mut res = vec![];
if let Some(root) = root {
let mut queue = VecDeque::from([root]);
while !queue.is_empty() {
let level_len = queue.len();
let mut level_vec = vec![];
for _ in 0..level_len {
if let Some(curr) = queue.pop_front() {
level_vec.push(curr.borrow().val);
if let Some(left) = curr.borrow_mut().left.take() {
queue.push_back(left);
}
if let Some(right) = curr.borrow_mut().right.take() {
queue.push_back(right);
}
}
}
res.push(level_vec);
}
}
res
}
public List<List<Integer>> levelOrder(TreeNode root) {
//return this.iterationImpl1(root);
return this.iterationImpl2(root);
}
List<List<Integer>> iterationImpl1(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
if (root != null) {
Deque<Object[]> queue = new ArrayDeque<>() {{
this.addLast(new Object[]{0, root});
}};
while (!queue.isEmpty()) {
Object[] pop = queue.removeFirst();
int level = (int) pop[0];
TreeNode curr = (TreeNode) pop[1];
if (level == res.size()) {
res.add(new ArrayList<>());
}
res.get(level).add(curr.val);
if (curr.left != null) {
queue.addLast(new Object[]{level + 1, curr.left});
}
if (curr.right != null) {
queue.addLast(new Object[]{level + 1, curr.right});
}
}
}
return res;
}
List<List<Integer>> iterationImpl2(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
if (root != null) {
Deque<TreeNode> queue = new ArrayDeque<>() {{
this.addLast(root);
}};
while (!queue.isEmpty()) {
int levelSize = queue.size();
List<Integer> levelList = new ArrayList<>();
for (int i = 0; i < levelSize; i++) {
TreeNode curr = queue.removeFirst();
levelList.add(curr.val);
if (curr.left != null) {
queue.addLast(curr.left);
}
if (curr.right != null) {
queue.addLast(curr.right);
}
}
res.add(levelList);
}
}
return res;
}