Skip to main content

116, Populating Next Right Pointers in Each Node

MikeAbout 5 minbinary treemediumbinary treelinked listdepth first searchbreadth first search

I Problem

You are given a perfect binary tree where all leaves are on the same level, and every parent has two children. The binary tree has the following definition:

struct Node {
    int val;
    Node *left;
    Node *right;
    Node *next;
}

Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL.

Initially, all next pointers are set to NULL.

Example 1
picture116
Input: root = [1, 2, 3, 4, 5, 6, 7]
Output: [1, #, 2, 3, #, 4, 5, 6, 7, #]
Explanation: Given the above perfect binary tree (Figure A), your function should populate each next pointer to point to its next right node, just like in Figure B. The serialized output is in level order as connected by the next pointers, with '#' signifying the end of each level.

Example 2
Input: root = []
Output: []

Constraints

  • The number of nodes in the tree is in the range [0, 2¹² - 1]
  • -1000 <= Node.val <= 1000

Follow up

  • You may only use constant extra space.
  • The recursive approach is fine. You may assume implicit stack space does not count as extra space for this problem.

Related Topics

  • Linked List
  • Depth-First Search
  • Breadth-First Search
  • Binary Tree

II Solution

#[derive(Debug, PartialEq, Eq)]
pub struct Node {
    pub val: i32,
    pub left: Option<Rc<RefCell<Node>>>,
    pub right: Option<Rc<RefCell<Node>>>,
    pub next: Option<Rc<RefCell<Node>>>,
}

impl Node {
    pub fn new(val: i32) -> Option<Rc<RefCell<Node>>> {
        Some(Rc::new(RefCell::new(Node {
            val,
            left: None,
            right: None,
            next: None,
        })))
    }
    pub fn new_with_children(
        val: i32,
        left: Option<Rc<RefCell<Node>>>,
        right: Option<Rc<RefCell<Node>>>,
    ) -> Option<Rc<RefCell<Node>>> {
        Some(Rc::new(RefCell::new(Node {
            val,
            left,
            right,
            next: None,
        })))
    }
}
pub fn connect(root: Option<Rc<RefCell<Node>>>) -> Option<Rc<RefCell<Node>>> {
    //Self::bfs_iter_1(root)
    Self::bfs_iter_2(root)
}

fn bfs_iter_1(root: Option<Rc<RefCell<Node>>>) -> Option<Rc<RefCell<Node>>> {
    if let Some(root) = root.clone() {
        let mut queue = VecDeque::from([root]);

        while !queue.is_empty() {
            let level_len = queue.len();
            let mut prev: Option<Rc<RefCell<Node>>> = None;

            for i in 0..level_len {
                if let Some(curr) = queue.pop_front() {
                    if i > 0 {
                        prev.map(|prev| {
                            prev.borrow_mut().next = Some(curr.clone());
                        });
                    }
                    prev = Some(curr.clone());
                    if let Some(left) = curr.borrow().left.clone() {
                        queue.push_back(left);
                    }
                    if let Some(right) = curr.borrow().right.clone() {
                        queue.push_back(right);
                    }
                };
            }
        }
    }

    root
}

fn bfs_iter_2(root: Option<Rc<RefCell<Node>>>) -> Option<Rc<RefCell<Node>>> {
    if let Some(root) = root.clone() {
        let mut queue = VecDeque::from([(root.clone(), 0)]);
        let mut prev: (Option<Rc<RefCell<Node>>>, i32) = (None, -1);

        while let Some((curr, level)) = queue.pop_front() {
            if prev.1 == level {
                prev.0.map(|prev| {
                    prev.borrow_mut().next = Some(curr.clone());
                });
            };
            prev = (Some(curr.clone()), level);

            if let Some(left) = curr.borrow().left.clone() {
                queue.push_back((left, level + 1));
            }
            if let Some(right) = curr.borrow().right.clone() {
                queue.push_back((right, level + 1));
            }
        }
    }

    root
}

Approach 2: Use Established Next Pointer

pub fn connect(root: Option<Rc<RefCell<Node>>>) -> Option<Rc<RefCell<Node>>> {
    //Self::use_next_pointer_iter(root)
    Self::use_next_pointer_recur(root)
}
///
/// Iteration
///
fn use_next_pointer_iter(root: Option<Rc<RefCell<Node>>>) -> Option<Rc<RefCell<Node>>> {
    let mut leftmost = root.clone();

    while let Some(level_first) = leftmost {
        let mut level = Some(level_first.clone());

        while let Some(curr) = level {
            match (curr.borrow().left.clone(), curr.borrow().right.clone()) {
                (Some(left), Some(right)) => {
                    left.borrow_mut().next = Some(right.clone());
                    if let Some(next) = curr.borrow().next.clone() {
                        right.borrow_mut().next = next.borrow().left.clone();
                    }
                }
                (_, _) => break,
            }
            level = curr.borrow().next.clone();
        }

        leftmost = level_first.borrow().left.clone();
    }

    root
}
///
/// Recursion(Pre-Order)
///
fn use_next_pointer_recur(root: Option<Rc<RefCell<Node>>>) -> Option<Rc<RefCell<Node>>> {
    const PRE_ORDER: fn(Option<Rc<RefCell<Node>>>) = |root| {
        if let Some(curr) = root {
            match (curr.borrow().left.clone(), curr.borrow().right.clone()) {
                (Some(left), Some(right)) => {
                    left.borrow_mut().next = Some(right.clone());
                    if let Some(next) = curr.borrow().next.clone() {
                        right.borrow_mut().next = next.borrow().left.clone();
                    }
                }
                (_, _) => return,
            }

            PRE_ORDER(curr.borrow().left.clone());
            PRE_ORDER(curr.borrow().right.clone());
        }
    };

    PRE_ORDER(root.clone());

    root
}